
JOURNAL OF COMPUTATIONAL PHYSICS 106,299-305 (1993) 

A Semi-implicit Spectral Method for the Anelastic Equations 

Scorr R. FULTON 

Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699-5815 

Received October 16,199l 

This paper describes the efficient and accurate solution of the two- 
dimensional anelastic equations by a Fourier-Chebyshev spectral 
method. A fourth-order Runge-Kutta method is used for th6 time 
integration, with the diffusion terms treated implicitly and all other 
terms (including the pressure gradient) treated explicitly. The model is 
free from aliasing and converges quickly once the solution is resolved. 
Numerical results are given for nonlinear flow generated by an 
atmospheric density current. 0 1993 Academic Press, Inc. 

1. INTRODUCTION 

The need to solve nonlinear flow problems accurately has 
given rise to a large number of computational methods. 
A recent workshop at the National Center for Super- 
computing Applications (NCSA) attempted to compare the 
performance of many such methods for a model problem 
involving nonlinear flow generated by an atmospheric 
density current [lo, 111. Most methods presented were 
based on finite differences or finite elements, which at best 
can converge only algebraically (e.g., second- or fourth- 
order accuracy in space). 

In contrast, spectral methods approximate the solution of 
systems of partial differential equations by truncated series 
expansions using global basis functions. For periodic 
problems one uses trigonometric basis functions, while for 
limited domains without periodicity, Chebyshev polyno- 
mials are appropriate. In either case, the truncation error 
(for smooth solutions) decays exponentially once the solu- 
tion is adequately resolved.’ Thus, when high accuracy is 
desired, spectral methods may be more efficient than finite 
difference or finite element methods. For a comprehensive 
introduction to spectral methods and their applications to 
fluid dynamics, see [ 11. Applications of Chebyshev spectral 
methods to atmospheric models are discussed in [3,4,6]. 

This paper describes the efficient and accurate solution of 
the problem posed for the NCSA workshop by a spectral 
method. Section 2 presents the governing equations and 
boundary conditions. The spectral discretization described 
in Sections 3 and 4 is conventional (Fourier-Galerkin in x, 

Chebyshev-collocation in z), except for building symmetry 
into the Fourier expansions. However, the solution proce- 
dure described in Section 5 is simpler than that used in 
similar models based on the incompressible Navier-Stokes 
equations, e.g., [7; 1, Section 7.31, principally due to 
treating the pressure gradient terms explicitly. Also, 
the semi-implicit Runge-Kutta scheme used for the time 
integration gives higher-order accuracy in time than is 
customary in such calculations. The numerical results given 
in Section 6 demonstrate the accuracy and efficiency of the 
method and provide numerical evidence for exponential 
convergence. 

2. GOVERNING EQUATIONS 

The anelastic equations [S] for two-dimensional flow can 
be written in advective form as 

1 
u,+uu,+wu,= -ppx+vv2u, (2.la) 

w, + uw, + ww, = - ; p; + v V2w +; (0 - f?), (2.lb) 

9, + ue, + we, = v v2e, (2.k) 

(PUL + (PWL = 03 (2.ld) 

where V2 = a2/ax2 + a2/az2. Here u and w are the velocity 
components in the x (horizontal) and z (vertical) directions, 
respectively, p is the density, p is the deviation pressure, 
8 = T[p,/(p + p) J” is the potential temperature, T is the 
absolute temperature, g is the acceleration due to gravity, 
and v is the diffusion coefficient. The basic state variables 
(denoted by overbars) depend only on z and are defined by 

T(z)= T,--$, (2.2a) 

(2.2b) 
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(2.2c) 
are equivalent. To build in the symmetry, we define the basis 
functions 

, (3.1) 
, 

where K = RdJcp (where Rd and cP are the gas constant and 
the specific heat at constant pressure for dry air) and To and and we approximate the model variables by 
p,-, are constant reference values. The pressure p in (2.1) is 
the deviation from ji (the total pressure is jj + p); it satisfies 
the diagnostic equation 4% z, t) = c” &, t) &), (32a) 

k=l 

where 

and 

V’P = (PF), + W)n 

F = v V2u - ( UU, + WU,) 

(2.3) 
wtx~ z~ f, = kzo ; wk(z, 2) c,(x), (3.2b) 

Ptx, z~ Cl = kto ;Pktz, t, ck(x)v (3.2d) 

G=vV’W-((uw,+ww,)+;(~-0). (2.4b) where y,, = 2 and Yk = 1 for k > 0. With respect to the inner 
product 

The computational domain is the rectangle 0 <x < L, 
0 < z < H, with boundary conditions 

(3.3) 

u=w,=e,=o at x=0, x=L (2.5a) the basis functions (3.1) have the orthogonality properties 

and tcj, ck) = {F’ zth-?& _ 
9 

(3.4a) 

u,=w=e,=o at z=O, z=H. (2.5b) 
~t/=t&o’ (3.4b) 

, 
Making these substitutions into (2.la), (2.lb) and using 

(sj, Sk) = {; 
9 

(2.4) gives so the coefficients in (3.2) are given by 

P,=DF at x=0, x=L (2.6a) 
#k = (u, Sk) (k = 1, . . . . A’,), (3.5a) 

and wk = tw, ck) (k = 0, . . . . iv,), (3.5b) 

ek = (6, ck) 

P,=@ at z=O, z=H (2.6b) 
(k = 0, . . . . ZV,), (3.5c) 

Pk = (P, ck) (k = 0, . . . . IV,). (3.5d) 
as boundary conditions for the pressure equation (2.3). 

To derive the Galerkin approximation to (2.1) we take 
the inner product (3.3) of (2.la) with Sk and (2.lbk(2.ld) 
with ck and use (3.2) and (3.4) to obtain 

3. FOURIER METHOD IN x 

In view of the boundary conditions (2.5a), we can extend 
the x-domain to -L < x < L by symmetry (with u odd and 

auk dt+(UUx+WUz,Sk)= -+ip,) 

w, 8, and p even functions of x), and then assume all 
variables are periodic in x with period 2L. This allows us +v ($-f2&), (3.6a) 

to represent the variables by truncated Fourier series 
expansions in x; note that this would not be appropriate 
if the problem to be studied truly had walls at the lateral 
boundaries, as implied by (2.5a), but for the symmetric 
problem to be studied [cf. Section 61 the two approaches 

awk i aPk 
,t+(uw,+ww,,ck)= --_-+v 

a2wk ,-2w 
-- 

P az ( az2 k 
> 

+ f (ok - 28&d, (3.6b) 
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2 + (ue, + wez, c/J = v (!$k20k), (3.6~) 

(3.6d) 

where f = ka/L and Sj,, is the Kronecker delta. Likewise, the 
Galerkin analogue of (2.3) is 

a2Pk 
-n2Pk+s = f/iF, + ; (PG,), (3.7) 

where Fk = (F, sk) and Gk = (G, c,), and the boundary 
conditions (2.6b) become 

aPk x=PG, at z=O,. z=H. i3.8) 

To compute the nonlinear terms in (3.6) we use the trans- 
form method [9]. For example, consider the calculation of 

Wk = (UK cd, (3.9) 

where U and V are any two even model variables and 
W= UV is their product (the odd/sine case is similar). We 
start with the coefficients of U and V satisfying 

U(x) = kEo i UkCk(X)v 

V(x) = k$o; VkCk(X) 

(3.10) 

and pad them with zeros out to k = M, > N,, e.g., 

(3.11) 

We then evaluate U and V at the transform gridpoints 
xi = jL/M, via discrete cosine transforms, e.g., 

uj = kFo i ukCk(Xj)* j = 0, . . . . M,, (3.12) 

where yn = 2 if k = 0 or k = M, and 1 otherwise (note that 
it is okay to divide the last term by two since it is in fact 
zero). We then multiply the values in physical space to 
obtain 

wj= ujvj, j= 0, . . . . M,, (3.13) 

and then transform back to obtain 

k = 0, . . . . M,. (3.14) 

It can be shown [ 1, Section 3.2.21 that if M, > ZN, then 
mk= W, for k=O, . . . . N,; i.e., the nonlinear term is 
computed without aliasing. 

4. CHEBYSHEV METHOD IN z 

In view of the rigid vertical boundaries implied by (2.5b), 
Fourier expansions in z would be inappropriate, giving only 
algebraic convergence. Instead, we use Chebyshev expan- 
sions, which give exponential convergence (to smooth 
solutions) independent of the boundary conditions [IS]. 
Formally, for any model variable U which depends on z 
(e.g., uk9 wk, Ok, or pk) we write 

U(z)= F &T,(z’), (4.1) 
ll=O 

where T,(z’) = cos[n cos-‘(z’)] is the Chebyshev polyno- 
mial of degree n and z’ = - 1 + 2z/H. We relate these 
expansions to the model equations by the collocation 
projection; i.e., we require (3.6) to hold exactly at the 
Chebyshev collocation points 

zj+l +q, Ti=cos(jn/M,), j=O ,..., M,, (4.2) 

when the variables are all replaced by truncated Chebyshev 
series of the form (4.1). The Dirichlet conditions on w 
simply replace the collocation equations for w at z = 0 and 
z = H, while the treatment of the Neumann conditions on U, 
9, and p will be described below. 

In practice, each model variable U is represented by its 
values Qj= U(zj) at the collocation points in z, and its 
Chebyshev spectral coefficients 8, come into play in only 
two ways. First, to evaluate the z-derivative of U at the 
collocation points, we transform U to Chebyshev spectral 
space via 

(4.3) 

(where 7, = 2 if n = 0 or n = M, and 1 otherwise), compute 
the coefficients o(l) of U, via the backward recurrence n 
relation 
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where 0%: = L?(i) MZ+ 1 = 0, and transform the result back to 
physical space to obtain the values 

(4.5) 

Second, to solve a problem of the form 

1=u- u,= v, O<z<H, (4.6) 

where il is a constant and V is a known function of z (e.g., 
(3.7)), we transform it to obtain 

l’(j _ @2) = p 
n n n, n = 0, . . . . M, - 2, (4.7) 

where 0:’ is the coefficient of U,,. We then solve (4.7), 
together with two equations arising from either Dirichlet or 
Neumann boundary conditions, by converting it to a pair of 
diagonally dominant tridiagonal linear systems [S, Sec- 
tion lo], and transform the results back to obtain U. In 
both cases, working in spectral space has the advantage of 
speed: the direct operations would involve full matrices and 
thus require (O(M:) operations, whereas computing (4.4) 
and solving (4.7) each require only O(M,) operations. The 
transforms (4.3) and (4.5) require only O(M, log M,) 
operations since they can be computed as discrete cosine 
transforms using the FFT algorithm. 

The Chebyshev collocation method as described above 
is actually a pseudospectral method, in that it includes 
aliasing. However, filtering the Chebyshev spectral 
coefficients by retaining only the modes 0 <n < N,, where 
$iV, < M,, removes the aliasing and results in a true spectral 
method. In practice, this is easily accomplished in the course 
of solving implicit problems of the form (4.7) at each time 
step as described below. 

5. TIME INTEGRATION 

The classical fourth-order Runge-Kutta (RK4) scheme is 
often practical for Chebyshev spectral models [ 31: it is easy 
to implement, sufhciently accurate, and conditionally stable 
(unlike the leapfrog scheme, which for Chebyshev models is 
unconditionally unstable). However, the time step required 
for stability may be excessively small. In this model, the 
advection terms force At = O(ZVL~) and the diffusion terms 
force At = 0(iV~~), so for large A’,, it is advantageous to 
treat at least the diffusion terms implicitly. 

To formulate a semi-implicit RK4 method, it is con- 
venient to think of the present space-discretized model as a 
special case of a generic time-dependent model described by 
predictive equations of the form 

Wt) 
-=A(& v, w)+B(t, v, w) at 

and diagnostic equations of the form 

C(t,v, w)=O. (5lb) 

Here v(t) and w(t) are vectors consisting of the predicted 
and diagnosed model variables, respectively; the terms A 
and Bare to be treated implicitly and explicitly, respectively. 
Using backward differencing for A and the RK4 method for 
B gives a one-step time integration scheme, in which each 
step consists of four stages (or partial steps) as follows: 

-I+ l/2 
V -V’ 

At/2 
= ,-‘+ 112 + B’, C” ‘I2 = 0, (5.2a) 

v’+ 112 _ v’ 

At/2 
= A’+ 112 + B’+ I/=, C’+ 1’2 = 0, (5.2b) 

-I+ 1 
V -V’ 

At 
= a’+ 1 + B’+ I/=, z;‘+ ’ = 0, (5.2~) 

v’+ I- v’ 

At 
=A’+‘+jj’+‘, c’+‘=o . (5.2d) 

Here I specifies the time level t, = I At and the A, B, and 
C terms are evaluated as A’+l=A(t,+l, v’+l, WI+‘), 
B’= B(t,, v’, w’), c’+l12= C(t,+,,,, i’+l12, ii’+1/2), etc.; the 
one exception to this general notation is 

B’+‘=~(B’+2P’+‘/=+2B’+l/=+B’+l). (5.3) 

Note that each stage involves solving an implicit problem of 
the form 

v’+~- yA ‘+8 = known terms, c’+b = 0 (5.4) 

for v’+ B and w’+~, where /? and y are constants. 
For the present model, v(t) and w(t) consist of the model 

variables U, w, 8 (in Fourier spectral space in x and at 
Chebyshev collocation points in z), and A represents the dif- 
fusion terms and B all others (advection, pressure gradient, 
and buoyancy). The diagnostic condition C here represents 
the boundary conditions in z; the pressure p enters only in 
computing the pressure gradient terms in B. We execute 
each of the four stages of the scheme (5.2) as follows: 

1. Given I(, w, 0 at the beginning of the stage, compute 
the explicit terms B: 

a. compute the advection and buoyancy terms 
b. solve the pressure equation (3.7) for p 

C. compute the pressure gradient terms. 
2. Solve the implicit problem (5.4) for U, w, 8 at the end 

of the stage: the problem for u takes the form 

u,-yv(L’u,-$)=knownterms, (5.5) 
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where the boundary conditions auk/az = 0 are applied at 
z = 0 and z = H, the problems for w and 8 are analogous. 

Note that (3.7) and (5.5) have the same form as (4.7) and 
thus can be solved efficiently in Chebyshev spectral space as 
described in Section 4. Also, we could predict only w and 0 
and diagnose u from continuity, but imposing the Neumann 
boundary conditions on u is more awkward and the savings 
in computer time and storage are minimal. 

6. RESULTS 

The initial condition for the NCSA workshop problem 
consists of a negatively buoyant blob of air of absolute 
temperature T = T+ AT, with 

where 

6.4 
- 4.8 

E 
5 3.2 

N 1.6 

0.0 

6.4 

2. 4.a 
5 3.2 

N 1.6 

0.0 

6.4 

-2 4.a 
5 3.2 

N 1.6 

0.0 

6.4 

-2 4*a 
5 3.2 

N 1.6 

AT= 
- $T, [cos(d) + 11, 
0, 

ii iz :’ (6.la) 
N 3 

qyk~+(~)‘]‘“. (6.lb) 

t=os min 0 = -16.6 *ax ti = 0.0 

t = 300s min B = -13.9 max 8 = 0.0 

~“““““““““““““““‘~ 

t=mos tin 8 = -11.9 m&x e = 0.1 

t=QOOa min 6 = -9.6 max 8 = 0.1 

0.0 
0.0 6.4 12.8 

x (km) 

19.2 25.6 

FIG. 1. Reference solution (M, = 512) deviation Orel- 0 vs x and z. 

h&=96 x%4,=24 min 6’ = -16.2 max 0 = 3.4 

M. = 128 M, = 32 min B = -15.0 max 0 = 1.6 

M, = 192 M, = 48 min t7 = -14.1 max B = 0.3 
1 r ” 7 r II ” 7 r c I ” ” / 

M, = 256 M, = 64 rn,” B = -13.9 max 8 = 0.0 

FIG. 2. Deviation fI vs. x and z at c = 300 s. 

The corresponding potential temperature is 0 = T&,/p)“, 
and the initial u and w fields are zero. The constants used are 
R, = 287.04, cp = 1004, p. = 105, To = 300, g = 9.81, v = 75, 
L = 25600, H = 6400, x, = 0, x, = 4000, z, = 3000, z, = 2000, 
and T, = 15, all in SI units. For all model runs the spatial 
resolution was specified by M,, with M, = MJ4 and N, 
and N, chosen as large as possible while still avoiding 
aliasing (i.e., N, < tM, and N, < $M,; see also Table I). 

Figure 1 shows the deviation 8 field (i.e., 8 - 0) for a high- 
resolution reference run (M, = 512). The convergence of the 
model is demonstrated by the solutions shown in Figs. 24 

TABLE I 

Execution Time on a CRAY Y-MP4J464 (for At = 2 s) 

Mx MZ NX NZ h(m) CPU seconds 

64 16 42 10 400 11 
96 24 63 15 267 19 

128 32 85 21 200 31 
192 48 127 31 133 62 
256 64 170 42 100 116 
384 96 255 63 67 247 
512 128 341 85 50 453 
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Mzz9.5 M,=24 min 8 = -19.6 Inax 9 = 4.4 M,=96 M.=24 min 9 = -15.1 me3 e = 3.6 

M = 126 M, = 32 min 8 = -17.6 max 9 = 1.1 

--B-O . 

M. = 128 M, = 32 min B = -11.8 mlhx e = 0.7 
t”““‘,“““‘l”““‘I”““‘~ _- - 

M. = 192 M, = 48 min 6 = -14.1 max e = 0.5 
~“““‘I”““‘,“““‘,“““‘~ 

M. = 256 M, = 64 min 8 = -12.5 max e = 0.3 M.=256 M,=64 

M. = 364 M, = 96 mine = -12.0 max e = 0.1 M.=3&4 M,=96 

FIG. 3. Deviation 0 vs. x and z at t = 600 s. FIG. 4. Deviation 0 vs. x and z at t = 900 s. 

for various spatial resolutions. To quantify the rate of con- 
vergence (or more properly, the rate of self-convergence), 
we compare the solution for 8 at various resolutions to the 
solution erer from the reference run (MX = 512). Figure 5 
shows this difference measured in the I2 norm 

sensitivity studies (not shown) indicate that the model is 
stable with respect to small perturbations of the initial 
conditions. 

1 
i .i i Ce(xi, zj)-e&xi, zj)l'} 

112 
lle-e~dl12= 9 

r=O j=O (6.2a) 

and Fig. 6 shows the same quantity measured in the I, 
norm 

Il~-kfll,= max le(xi, zj) - eredXi, zj)l* (6.2b) 
OCi<I,O<j<J 

Here xi = iL/I and zj = jHfJ with Z = 256 and J = 64; i.e., the 
solution is evaluated on a uniform grid with mesh size 
h = 100 m (this same grid was used to produce Figs. l-4). 
We see that at t = 0 the convergence is somewhat slow, as 
might be expected, since the initial condition (6.1) is not 
infinitely differentiable. At later times the convergence 
appears to be exponential: the error is proportional to 
eeMXIMo, with MO in the range 670. Results of numerical 

The above results were all produced using the time step 
At = 2s, which is stable for resolutions to at least M, = 512. 
Comparison with runs at smaller time steps indicate that the 
time discretization error is considerably smaller than the 
space discretization error to about M, = 256, so in fact 
larger time steps could be used without loss of accuracy. 
At M, = 384, the time discretization error at At = 2s is 
probably about four times as great as the space discretiza- 
tion error. The solution converges slowly with decreasing At 
at these higher resolutions; the dominant contribution to 
the error appears to be from the diffusion terms, which are 
treated with only a first-order method in time. If higher 
accuracy were desired, one could use a higher-order implicit 
method for the diffusion terms. However, treating them 
explicitly (e.g., with the RK4 scheme) is probably not 
practical: with M, = 256, the fully explicit RK4 scheme 
already requires At < 0.5 s for stability, and At decreases 
like M;4 due to the diffusion terms. 

The model was coded in FORTRAN 77; all significant 
calculations are easily vectorizable. All sine, cosine, and 
Chebyshev transforms were computed by converting them 

M,=192 M,=46 min e = -10.3 mm e = 0.5 

min e = -9.8 max e = 0.2 

mill e = -9.6 max e = 0.1 
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lo-"""""""""' c j a a""j j " b I' 0 128 256 384 5l2 

M” 

FIG. 5. Error in 0 (difference from M, = 512 solution) measured in the 
I2 norm as a function of M, for t = 0, 300,600, and 900 s as labeled. 

to half-complex to real discrete Fourier transforms by the 
method of [Z] and evaluating those by the Temperton FFT 
routines [12]. (A bug in the assembly-language version of 
these routines (ecmfft) gave nondeterministic results, so an 
all-FORTRAN version (about 25% slower) was used.) 
Table I shows the execution time for the model on the 
CRAY Y-MP4/464 at NCSA for At = 2 s with various spa- 

1 r 

b 
t 
m 0.1 r 

-8 

0.01 r 

& ; 600 
900 

300 

0.001 . 
0 128 256 384 512 

M” 

FIG. 6. Error in 0 (difference from M, = 512 solution) measured in the 
I, norm as a function of M, for t = 0, 300,600, and 900 s as labeled. 

tial resolutions (here h = L/M, gives the mesh spacing in x 
on the transform grid). Most of the work seems tied up in 
the computation of the nonlinear terms; neither predicting 
only w and 19 or using the fully explicit RK4 scheme (with 
the same time step) makes any significant change in the 
execution time. 

7. CONCLUDING REMARKS 

The spectral model described here solves the NCSA 
workshop problem accurately in a reasonable amount of 
computer time. It is free from aliasing and converges quickly 
once the solution is adequately resolved. Semi-implicit time 
differencing allows reasonable sized time steps to be used. If 
extremely high accuracy were desired, one should use a 
higher-order time scheme for the diffusion terms, since they 
limit the accuracy at high resolutions. However, the present 
model can compute the solution for 8 everywhere to within 
better than 0.1 K, and it is doubtful that higher accuracy 
would normally be needed. 
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